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COMPARING RIEMANNIAN FOLIATIONS WITH
TRANSVERSALLY SYMMETRIC FOLIATIONS

FRANZ W. KAMBER,
ERNST A. RUH & PHILIPPE TONDEUR

1. Introduction and result

In this paper we compare Riemannian foliations with transversally homoge-
neous foliations, where the model transverse structure is of the type of a
compact symmetric space G/K. The datum needed for this comparison is a
connection in the normal bundle, having similar properties as the canonical
connection in the case of a transversally symmetric foliation. This similarity is
most conveniently formulated in terms of the corresponding Cartan connec-
tions. For the symmetric model case the curvature of the Cartan connection
vanishes. An almost transversally symmetric foliation is one where this curva-
ture is small in an appropriate norm. In the spirit of Rauch’s comparison
theorem [15], and more specifically, the comparison theorem of Min-Oo and
Ruh [13], we wish to conclude that this assumption already implies the
existence of a transversally symmetric structure of type G/K. We succeed in
doing so for tense Riemannian foliations with small mean curvature. Here the
tenseness means that the mean curvature form of the Riemannian folation is a
basic 1-form. A weaker form of this result was announced in [6], where the
mean curvature form was assumed to vanish.

The definitions required to formulate the precise result are in §2. The norms
are defined in §5. In the following theorem we let g and f denote the Lie
algebras of G and K respectively.

Theorem. Let F be a transversally oriented Riemannian foliation of codi-
mension q > 2 and basic mean curvature form x on the compact oriented
Riemannian manifold (M, g,,). Let G/K be an irreducible compact symmetric
space of dimension q and semisimple ¢. There exists a constant A > 0 depending
only on the Lie algebra g and curvature bounds on M with the following property.

Received August 4, 1986 and, in revised form, April 2, 1987. This work was supported in part by
grants from the National Science Foundation and by the Max-Planck-Institut fur Mathematik,
Bonn.



462 F. W. KAMBER, E. A. RUH & PHILIPPE TONDEUR

If w: TP — g is a basic Cartan connection form on the foliated K-reduction P of
the normal frame bundle of ¥ with Cartan curvature & and basic mean curvature
form «x, then ||k|l, o, + ||€ll; , < A4 in appropriate Sobolev norms implies that F
is transversally symmetric of type G/K. -

The idea of the proof is to construct a Cartan connection @ with vanishing
curvature. This yields a developing map ®: 2 — G on the universal covering
P, equivariant with respect to a homomorphism 7,(P) = I' € G (holonomy of
®). It induces in turn a map ¢: M — G/K, possibly after an averaging
process. This map defines the transversally symmetric structure of type G/K
for the foliation % as asserted in the theorem, via its lift to the universal
covering M.

This implies by [3] that the cohomology Hy(%# ) of basic forms (see (2.2)
below) is isomorphic to the De Rham cohomology of G/K. Now it is well
known that in the circumstances above H}p(G/K)= H'(g,t)=m¥X=0,
where g = £ ® m. It follows that the basic mean curvature x (see Definition
2.1 below) represents the trivial cohomology class. By the procedure in [10,
(4.6)] the metric g,, can be modified by changing it only along the leaves so as
to make all leaves minimal, i.e. % is harmonic with respect to the modified
metric. If moreover the holonomy group I' is dense in G, then x € QL =
Hi(F)= HLx(G/K) =0, so the form x must necessarily itself vanish, and %
is already harmonic with respect to the given metric. These arguments show in
any case that under the hypothesis of our theorem % is necessarily a taut
foliation.

2. Background material
Let % be a foliation on M, given by an exact sequence of vector bundles
0->L->TM—-Q-0.
Here L denotes the bundle of vectors tangent to %, and Q = TM /L is the
normal bundle of dimension ¢, the codimension of #. Let G/K be a
Riemannian symmetric space of compact type with G and K connected, and
g = dimG/K. The foliation is said to be transversally homogeneous of type
G/K if # is given on an atlas of distinguished charts U = {U,} by local
submersions f,: U, = G/K, related by transition functions given by the left
action of an element v,, € G: f, = v,5f3 (see e.g. [2]).

This transversal homogeneity can be expressed in terms of the orthonormal
frame bundle F(Q) of Q as follows. The isotropy representation of G/K
shows that K C SO(gq). Therefore, the transversal symmetric structure pro-
vides a K-reduction K —» P> M of F (Q) with a foliated bundle structure [7].
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This means that there is a K-invariant involutive subbundle L C TP, transver-
sal to the fibers of P. The quotient bundle of L divided by G on the base space
M is the given L € TM. A connection on P is adapted to the foliated bundle
structure if the horizontal subspace contains L. Starting with a connection on
P, the subspace L, is the horizontal lift of L.

A f-valued adapted connection 1 on P gives rise to a g-valued Cartan
connection w = 7 + ¢, where ¢ is the canonical R %valued (solder) 1-form on
P defined by ¢(X) = u'(7(X)) for X € T, P, and the frame u of Q at 7(u)
is viewed as a linear isomorphism R? — Q_,,. The curvature

Q,=do + iw,w]
can be expressed in terms of the curvature , = dy + [, 7], and the torsion
®, =do + [n, 9] by
Q,=9,+ile, 0]+,
where the brackets are expressed in terms of the brackets in the Lie algebra
g=ftem

In case n is the unique torsion free connection, the symmetric space
structure implies @, = — }[, ¢] and thus € = 0. The last equation is the
integrability condition for a locally symmetric transversal structure, and there-
fore is equivalent to the definition of a transversally symmetric foliation by
local submersions outlined at the beginning of this section.

In our theorem we allow a slightly more general situation. We start with a
basic Cartan connection (see [5] and the definition below) w: TP — g with
small curvature. It is not necessary to assume that the 1-form ¢ inw =7 + ¢
defined by the Cartan decomposition g = £ @ m is the canonical 1-form. It
suffices to assume that ¢ is nondegenerate. To simplify notation we write
instead of & .

The Cartan connection w is said to be adapted to the foliation % on P if
restricted to L vanishes. An adapted Cartan connection is basic if i(X)Q =0
for all X € T'L (compare [7]). This implies that € itself is a differential form in
the basic complex defined later in this section.

A foliation % on M is said to be almost transversally symmetric of type
G/K if there exists a foliated K-reduction P of F(Q) and a basic Cartan
g-connection w with small curvature €. In order to avoid technical difficulties
of the kind deait with in [13}, we measure £ in terms of a norm involving first
derivatives (compare §5 for the precise definition). In view of [1] there is no
loss in generality.

Next we describe the mean curvature form « of # as given in [9], [10]. Since
K < SO(g), the foliations considered are necessarily Riemannian. It is there-
fore no restriction to assume g,, to be a bundle-like metric on M [16]. The
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choice of a metric defines a splitting o: @ — TM, with isometric identification

(@, 80) S (LY, gp| LY). The (partial) Bott connectionV in Q is given by
Vys=n[X,Y] for XeTL, Y& TTM withn(Y) =s € Q.

The Riemannian connection v* of g,, gives rise to an adapted connection in

Q as follows:

) for XeTL,seTQ,
m(v¥Y,) for X€ToQ,s< Q, and Y, = o(s) € T'oQ.

This connection is metric and torsionfree (see [8]). The notations of that paper
are also used below.

Consider the Weingarten map W(s): L — L given for s € I'Q by W(s)X =
7 (VYY) for XeTL, Y, =o(s) € TaQ, and 7+ the orthogonal projec-
tion TM — L.

(2.1) Definition. The 1-form « given by k(s) = TrW(s) is the mean curva-
ture form of F.

The basic complex of % is given by
(22) Qu(F)={BeQ(M)]i(X)B=0,0(X)B=0forall XeTL},
where ©( X) denotes the Lie derivative. In our theorem we assume the mean
curvature k to be a basic 1-form (this is the tenseness property of [9], [10]). As
a consequence we have dx = 0 (see [10, (4.4)] or the appendix to [11]).

Let » € Qf denote the transversal volume form associated to the metric g,,.
Clearly dv = 0. Then x = #*» is the characteristic p-form of # (p = dim F),
expressed in terms of the star operator associated to g,,. The form p=v A x &
is the Riemannian volume of g,,. The fundamental relationship between x .
and « is given by the congruence [10, 4.3]

(2.3) dxgz+ Kk A xz=0 mod Ztrivial forms.
This means that the ( p + 1)-form on the left-hand side vanishes when evaluated
on p tangent vectorsin L.

Now let E be a vector bundle over M with covariant derivative D. The
associated covariant exterior derivative d% on the E-valued form Q(M, E) is
given by

24) (d"B)( X+, X,) = > D' (vxB) (KXo, o, XKoo, X,),

i=0
where ¥ is the connection defined by D on E and V¥ on M. The correspond-
ing Lie derivative is given ®(X) = dfi(X) + i(X)dE. The complex of basic
E-valued forms is then given by
Q(#.E) = (B (M, E) |{(X)B =0, 05(X)B =0

forall x € TL}.

vgs=

(2.5)
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The Bianchi identity dER? = 0 shows that the condition i(X)R® = 0 for all
X € T'L implies that the curvature tensor R” is a basic 2-form. As a conse-
-quence of this condition the exterior derivative d£ on Q(M, E) restricts to

(2.6) dE:QL(F,E) » Q5 (&, E).

Next we assume E — M to be equipped with a bundle metric gz and D to
be a metric covariant derivative. We need the star operator *: Q5 (#,E) —
QF (&, E) associated to g,, and characterized by g-(B A #8) = v (transver-
sal volume). It is related to the ordinary star operator =: Q' (M, E)—
Q"7"(M, E) (n = dim M) associated to g,, by the formula *f = ¥8 A x  for
B € QL(F, E) (see [10, (4.12)] for the case of the trivial line bundle E). The
global scalar product {, » on (M, E) restricted to basic forms is then

(B.Bs= [ g:(BA) Axs.

With respect to this scalar product the adjoint 85: Q4(F, E) » Q5 (%, E)
of d£ is given by

(2.7) 8EB = (1) P 5(dE -k A )FB

for B € QL(F, E) (see[10, (4.14)] for the case of the trivial line bundle E).

For the computations of §4 it will be convenient to use a special orthonor-
mal moving frame on M. For x € M let {e,}};., € T,M be an oriented
orthonormal basis with {e;}7, C L, and {e,}i_,.,1CQ, =Ly (p+q=
n). Let U be a distinguished (flat) neighborhood of x for % with local
Riemannian submersion f: U » B.Fora=p + 1,---,nlet E, € I'(U, Q) be
the pull back of the extension f,e, to a vector field on B by parallel transport
along geodesic rays emanating from f(x) (use [16, Proposition 4.2]). We
complete { E, }5_,+; by the Gram-Schmidt process to a moving frame { E 4} _,
by adding { E;}/7., € I'(U, L) with (E,), = e,. We then have

VgEa' = (V,%Ea,)x =0 fora,a’ =p+1,---,n.

As a consequence of the torsionfreeness of V¢ (see [8, (1.5)]), we have
[E,, E,], € L,. Furthermore, since the E, are infinitesimal automorphisms of
F, we have V¢E, = 7[X,E,] = 0 for X € T(U, L). In terms of this special
frame, 8% takes the following form:
(3§ﬁ)(Xz,' . Xp) = _ Z (VEHB)(EQ, X,, - ',X,,)
a= 1
(2.8) "
+ Y x(E,)-B(E,. X, X,).

a=p+1
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As usual the Laplacian is defined by
(2.9) AE = dESE + 8fdf.

3. The proof

In this section we deal with the formal aspects of the proof. The main work
is done in the remaining sections. For a motivation of the construction below
we refer to [13] where the nonfoliated version of the theorem was proved and
discussed.

Let % denote a Riemannian foliation on the compact Riemannian manifold
(M, g,,) with basic mean curvature x. Let % denote the lift of & to a
K-invariant foliation on the K-principal bundle of orthonormal frames P
associated to the normal bundle Q of the foliation &%. The data of the
Theorem specifies an adapted Cartan connection w: TP — g with small basic
Cartan curvature © = dw + 1w, @]. The Carian curvature is defined relative
to the model G/K, which means that the bracket in the definition of { is the
Lie bracket of the Lie algebra g of G, and that the structure group K of P
coincides with the isotropy group K of the symmetric space G/K.

It is well known (compare [13]) that a Cartan connection & with vanishing
curvature & gives rise to a developing map ¢: P — G, and a representation of
the fundamental group 7 (P) — I' € G. The map ¢ is equivariant with respect
to the actions of the fundamental group #,(P) on P and left translation by T'
on G respectively. If the Cartan connection &: TP — g respects the Cartan
decomposition g = £ @ m, i.e., if & restricted to the tangent space of the fibers
in the K-principal bundle P takes values in the Lie algebra f of K, then ¢
factors to @: M — G/K. The submersion ¢ defines the transversal symmetric
structure of the foliation #.

The main work in the proof is to establish the existence of an adapted
Cartan connection & on P with vanishing Cartan curvature Q. It turns out
that the flat Cartan connection constructed in the present proof respects the
Cartan decomposition g =f @ m only up to an error controlled by the
constant 4 of the Theorem. This does not interfere with the construction of a
developing map ¢: P — G but ¢: M = G/K has to be constructed as in [13,
p- 3431 by an averaging process.

We will obtain w: TP — g as the limit of a sequence of Cartan connections.
The sequence starts with «® = @, the Cartan connection of the Theorem. To
define the iteration step let E = P X g denote the trivial vector bundle over P
whose fiber is the Lie algebra g. On E we define the linear connection

(3.1) Dys = Xs +[w(X),s],
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where s is a section in E, Xs is the derivative of s in direction X, w = «° is
the original Cartan connection, and [, | is the Lie bracket of g. The curvature
R? of D is

(3.2) RP(X,Y)s = [Q(X,Y),s].

In particular, R? is a basic 2-form and we can consider the basic complex of
E-valued differential forms on P as in §2. Obviously, the norms of R” and Q
are identical.

Now we apply the DeRham-Hodge decomposition for A% on Q,(#, E) as
established in [11]. We define

(33) Wl = o + 8§Bi+1-
Here B! is the unique solution of
(3.4) AZRITL = _QF,

where @' is the curvature of «', and the operators 85 and A% are defined by
(2.7) and (2.9) respectively. We note that these operators are defined relative to
the foliation % on P. Proposition (4.8) guarantees that the solution of (3.4) is
unique.

Because the initial Cartan connection « = «° as well as the mean curvature
form & of & is in the basic complex Q,(F, E) of differential forms of P, the
connection forms «' and the curvature forms §° are in this complex as well.

The requirements for the convergence of {w'} to a flat Cartan connection @
are formulated as the following result.

(3.5) Main Lemma. Let w: TP — g denote the basic Cartan connection form
with basic curvature form Q, and let k denote the mean curvature form of the
foliation F assumed in the Theorem of §1. There exists a constant A" > 0
depending only on g and curvature bounds for the metric g,, on the basis M of P
such that (||x|ly o + 1Rl1..) < A’ implies that o'+ of (3.3) satisfies

@ 12 g < Uil o0 + 1Ll 1o

@) Y = @l < Ry
where c is a constant depending only on g and curvature bounds on g ;.

The assertion (i) of (3.5) shows that {||Q’|}; ,,} is a geometric sequence whose
ratio can be made arbitrarily small by choosing A’ suitably. This implies by
assertion (i) of (3.5) that £2 g||lw’*! — ||, ,, can be made arbitrarily small by
choosing A’ suitably. Therefore { w'} converges to an element @ in the Sobolev
space W, .. Since ||w — &, ,, is small, & is nondegenerate and hence a Cartan
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connection form. By (3.5)(i), & = d& + }[@, @) = 0. The regularity theorem
for this differential equation implies that @ is a smooth differential form. This
completes the formal part of the proof.

4. A Bochner-Lichnerowicz formula for basic E-valued 2-forms

In the course of the proof (see the previous section) we need to establish the
strict positivity of the Laplace operator AZ of (2.9) on basic 2-forms. We expect
this operator to be positive because the transversal structure of % on P is
close to the structure of a semisimple Lie group of compact type. For such
groups the Laplace operator on real valued 2-forms is well known to be
positive. Our computation follows closely the standard derivation of the
Bochner-Lichnerowicz formula (compare [4]). The additional complications
here are due to the curvature R? in the vector bundle E and the mean
curvature form & of the foliation % on P. Since both tensors are small their
contribution will not interfere with the positivity of A%,

We refer to §2 for the basic concepts. Here we deal with the special case of a
foliation % on P induced by a foliation % on M. To simplify the computa-
tions we work with a special moving frame adapted to the foliation % on P as
defined at the end of §2. Since the norms of & and « agree up to the volume of
K, we will write « also for the mean curvature form of #.

To formulate the result, we introduce the following operators on the space of
basic 2-forms (%, E). The first operator is related to the contribution of the
curvature of the Riemannian manifold P to the Bochner formula. For 8 €
Qp(F, E) we define

N

27(B)(X.Y)=- ¥ {B(R"(E,X)E,Y)-B(R"(E,Y)E, X)

a=p+1

(4.1) + B(E,, R*(E,, X)Y) - B(E,, R”(E,, V) X)),

where R” is the Riemann curvature tensor of the Riemannian metric induced

on P by w: TP — g and the Cartan-Killing form on g, and N = p 4+ dim g.
The second operator is related to the contribution of the curvature of the

connection D on the vector bundle E to the Bochner formula. We define

2P (B)(X.Y)
(42) = % (RU(E, X)B(E.Y) - R(E, V)B(E,, X)).

a=p+1
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The third operator is related to the contribution of the mean curvature form
k to the Bochner formula. We define

#(B)(X.Y)
= % (Ve(EDB(ELY)) ~ V(e EB(E.. X))
(43)
Se(EN(Ve )X ) + (vxB)(Y, E.) + (v 48)(Ew X))

where v is the product connection of D on E and the extension of the
Levi-Civita connection v ? to real valued differential forms on P.

In terms of the operators defined above, the Bochner formula is given in the
following proposition. ¥ is the product connection defined above and ¥ *v
= —tracev V.

(4.4) Proposition. If AL is the Laplace operator on basic 2-forms with values
in E defined in (2.9), then

A%B = v *vB + RP(B) + RF(B) + #(B).

Proof.
(356X Y) = = T (09 B)(En¥) = (0,7 B) (B )
~Vx(k(E)B(E,, Y)) + vy ((E)B(E,, X))},
(85d58)(X.Y)
— £ (T )+ (CaTh) 0 ) (77 ) EX))

+ Y w(EN){(VeB)(X,Y)+(ViBNY,E,) +(VyB)(E, X)},

(A%B)(X’Y) = - _ﬁ 1(ananB)(X’ Y)

4 T [(R(XEB)(EwY) +(R(Y, E)B)(E.. X))

+4(B)(X,Y).

Since R is the curvature tensor of v, the product connection of D on E and
the extension of v’ to differential forms on P, the second line on the
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right-hand side for A58 above is equal to
N

*Z {“'RD(X’ Ea)B(EwY) + RD(Y’ Ea):B(Ea’ X)}
+ % {B(R?(X,E)E,.Y) + B(E,, R*(X,E,)Y)

—-B(R?(Y,E,)E,, X)-B(E,, R"(Y,E,)X)},

The first line above equals (#2°8)(X,Y), the second line equals (R"B)(X,Y),
and Proposition (4.4) is proved.

In order to prepare for the estimate of the right-hand side in Proposition
(4.4), we compute Z¢, where P = G is a simple compact Lie group foliated by
points and E is the trivial line bundle over G with the product connection. We
obtain the following result.

(4.5) Proposition. If G is a compact simple Lie group with the Riemannian
metric provided by the (negative) Cartan-Killing form, then

2
(RB,B) = 3|BI".

To prove this proposition we need a lemma. Let g denote the Lie algebra of
a compact simple Lie group G. Let ¢ — g A g denote the injection defined by
the adjoint representation and the Killing form identifying g = g*, and let
Proj: g A g = g denote the corresponding orthogonal projection. (See [12] for
a version of the following fact.)

(4.6) Lemma. For any compact simple Lie algebra, the exterior product and
Lie bracket are related by the equation

Proj(x A y) =[x, y].

Proof. (We thank Bob Stanton for this proof.) Let {x;} denote an ortho-

normal basis with respect to the Killing form. Then

2 (x Ayadx;ypg adx, = 3 tr(x A yeadx;)ad x,.

Further

tr(x A yeadx,) = Y (adx,ox A y(x,), x;)
J

= 3 X (adx, ()% = (%, %)7), %)
J

- —;—((adx,.(x),y> — (ad x,(y), x).
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Substituting this in the first line yields
1
Z<X A y’adxi>Endgadxi = 52(<adxi(x)’ y> - <adxi(y)rx>) adxi

I

= % . 2Z<x,,[x,y]>adx,. = Z([x,y],x,)adxi,

and Proj(x A y) =[x, y].
Proof of Proposition (4.5). By definition (4.1) and the Bianchi identity
applied to the last two terms of (4.1), we have
N

(2°(B))(x,Y)= Y {B(R°(X,E)E,Y)+B(X,R(Y,E,)E,)}
(4.7) aspd

N
- X B(E,RX,Y)E,).
a=p+1
Since RY(X,Y)= i[X,Y] the above equation shows that Z¢ respects the
splitting ¢ A g = g ® g+ defined by the adjoint representation. In fact, the
first line in (4.7) is given by scalar multiplication because G is an Einstein
manifold. The second line, by Lemma (4.6), vanishes for f € g+ . Forf € g+

we obtain
dim g dimg

(2B.8)= Y ¥

a=p+1 y<8=p+1

{B(RY(E,.E,)E,, E;) - B(RO(E,. Ey)E,. E,) } - B(E,, E;)

dimg dim g 1
- T 2 % La(l(E.£) ELESE, B
a=p+1 y<d=p+1
1 e 1,, 2
= —5 % 1:8(EY’ES)B(E77E8) = E‘B' .
y<o=
For B € g C g A g we have to take the additional term
dimg dimg
- Z Z B(Ea’RG(Ey’EB)Ea)B(Ey’ES)
y<8=1 a=1

into account. Using Lemma (4.6) we obtain for the above expression

dimg

- X 3 L ellEa{lE s Ela((z, 2)
Y LRIV

This proves Proposition (4.5) for 8 € ¢ € g A g as well.
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We conclude this section with a proposition which summarizes the above
results to the extent needed in §§3 and 5. By choosing the constant A of the
Theorem of §2 small enough we can render the operators Z% and X
arbitrarily small. Therefore, the main term in Proposition (4.4) is (ZB, B).
Proposition (4.5) shows that for P = G this term is strictly positive. Since
IQll, . measures the difference between R’ and RS we can render this
difference arbitrarily small. We replace the factor § in Proposition (4.5) by % to
absorb the errors caused by @ and ¢". Taking into consideration

(V*9B,B) = ~X(V5 V5,88 = - L{E{V5,B8.8) +IVEBI}

44

It

= 2,8 +|vBF.

we obtain the following result.
(4.8) Proposition. Under the assumptions of the Theorem of §1 with the
constant A sufficiently small, the following inequality holds for B € Q%( %, E):

(AEB, BY > 34,18 +|vBI* + 118"

5. The estimates

The purpose of this section is to prove the Main Lemma of §3. To achieve
this we derive certain estimates related to the equation A58 = —Q, where the
elliptic operator A% is defined in (2.9), and @ is one of the curvatures of the
iteration of Cartan connections defined in (3.3). The basic strategy is the same
as in [13). Complications arise because, in contrast to [13], we deal with the
transversal geometry of a foliation. We utilize the de Rham-Hodge theory for
basic differential forms relative to a foliation as worked out in [11}. In contrast
to the main body of [11], where the differential forms are real valued, we have
to work here with vector valued differential forms. As a consequence, the
exterior derivative may not be exact. The assumption of small curvature is
sufficient.

As in [13] we have to make sure that the constants in the estimates can be
controlled by curvature assumptions only. In particular, the diameter and the
injectivity radius of the manifolds M and P should not enter the estimates.
This can be done, as in {13}, by localizing the definition of the Sobolev norms.
Instead of defining the norms by integrating the appropriate expression over
the Riemannian manifold P, we pull back the differential forms via the
exponential map exp,: 7,P — P to a ball B,(0) of a suitable radius r and
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center 0 € T,P, define the Sobolev norms on these balls as in [11, §4], and
then take the supremum over p € P:

(5.1) 1Blem=swp & [ |v*Bl",
PEP 45 "B

where m € N is the exponent and s € N is the number of derivatives taken
into account in the definition of the Sobolev space W, ,. As usual, |p| is the
degree of the multi-index p, and m = oo indicates the essential supremum,

Proposition (4.8) shows that AZ is positive on E-valued basic 2-forms.
Therefore, the equation AZ8 = —Q has a unique solution. An application of
Proposition (4.3) at the point where the norm |B| of the solution S of
AER = - is maximal shows

(52) 1Bllo,e0 < 51I€lo,ce-

Now, with the supremum of |8] under control it is sufficient to control the
constants in the Sobolev embedding theorem and in the regularity estimates for
the solution B of the elliptic system ALZB = —. Because of the localization of
the definition of the Sobolev norms these constants are controlled by curvature
bounds. The main result of {1] shows that, without loss of generality, bounded
curvature in the C%sense can be replaced by the assumption of a C*-bound
for a fixed k € N, Thus, for convenience we may assume that the assumption
of bounded curvature in the Theorem means that we have bounds-for a certain
number of covariant derivatives of the curvature tensor as well. One way to be
in the most favorable case of the Sobolev embedding theorem is to fix the
exponent m in W, ,, to be larger than the dimension of P.

To obtain more precise estimates on 8 we observe (compare {11, Proposition
3.6] and (4.3), (4.4)) that the Laplace operator restricted to basic forms differs
from AZ by ¢ only. As (4.3) shows, X" involves first derivatives only and the
usual elliptic estimates apply. We have

18115, < c(IBllom + | AZB]|1.m)»
and (5.2) implies

(53) 1Blls,m < cll@1,m-

After these preparations we are ready to prove the Main Lemma (3.5). In
fact, (5.3) applied to the solution 8:** of AEB'*1 = _Q' proves assertion (ii) of
(3.5). In order to prove the first assertion of (3.5) we compute Q*1;

Qi+l = gdof*l + %[wi+1’wi+1]
= do' + 1o, o] + dOEBT + 1o, 85B1]
+%[8£'Bi+1,wi] + %[853"“,85 i+1].
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In this formula, d is the standard exterior derivative. We have

Qitl=0 + d6§‘3i+1 + %[w0’858i+1] + %[Sgﬁiﬂ’wo]

+ %[wi _ w0’658i+l] + %[S§Bi+l,wi — wo] + %[SgBHl’ 858i+1].
The purpose of the introduction of 8% is to simplify the first line in the
expression for %1 above. Abbreviating the second line by r we obtain
QF = Q' + dESEBT + 7, or

(5.4) Qi1 = QF + AERI*L — §EAERTL 4 1.
The sum of the first two terms of the right-hand side above vanishes by the
definition (3.4) of B+, It suffices to estimate the last two terms.

Assuming the Main Lemma proved up to index i, we can choose the
constant 4’ small enough such that

(5.5) e® = @ll2m < (Il 1,00 + 12 1,00)
and (5.3) implies

(5.6) 7 llm < (e + 1200w ) 1€ Lm.
To estimate y = 85dEB'*! we define

(5.7) diy=9, 8fy=4¢,

and estimate the basic forms ¢ and . Now

¥ = 8fy = 8FoFdEp " = »(RP A »d ™),
where R? is the curvature of the connection D on E. We are only interested in
the norm of this term, for which it follows that

(5.8) 11, < ell ol €11, m-

To estimate ¢ we write ¢ = d5y = —dEQ!*! + dEr. Using (5.5) again together
with the Bianchi equation for 2/*! we obtain

(5.9) 120, < c(llklheo + 12 00) | Hl1m + | A5 g, e

Now, (5.6), (5.8), and (5.9) imply

(5.10) @ llo,m + 119 llo.m < c(lKllrco + 1 Rl1.c0 )12 1 m,

and Proposition (4.8) together with an elliptic regularity estimate implies
(5.11) vl < cllellie + 12010 )19 1,

This proves assertion (1) of the Main Lemma.
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